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Abstract-A complete formulation, including the local details of gas absorption-emission processes, 
has been made for thermal radiation in a parallel plate enclosure. The temperature is permitted to vary 
continuously between the plates, and the emissive power of the gas may have an arbitrary dependence 
on temperature. Thermal conductivity effects have been omitted. Solutions of the governing integral 
equations have been carried out for values of the single governing parameter kL (k = absorption 
coefficient, L = spacing) in the range 0.1 to 2.0. Temperature distributions and heat transfer results are 

given, For moderate values of kL, the temperature is quite uniform across the gas. 

R&un&-Une formulation complete comprenant les caracteristiques~d&aill&x et locales d’absorption 
et d’emission dun gaz a ete etablie pour le rayonnement dam un enceint formee par fac;oncontinue entre 
les plaques et le pouvoir emissif du gaz peut dependre dune faGon quelconque de la temperature. Les 
effets de conductibilit~ thermique ont ettc negliges Des solutions aux equations intfgrales du probleme 
ont et& calculees pour des valeurs du parametre d~te~inant, kL, comprises entre 0,l et 2 (k coegici- 
ent d’absorption, L tcartement des plaques). Les distributions de temperatures et des r&+ultats sur le 
le transfert de chaleur sont don&. Pour des valeurs mode&es de kL la temperature est pratiquement 

uniforme dans le gaz. 

Zusannnenfassung-Fur die thermische Strahlung in einem Hohlraum mit parallelen WPnden wird die 
vollstandige Formulierung angegeben einschlieglich der Grtlichen Einzelheiten der Absorption und 
Emission des Gases. Die Temperatur sol1 sich innerhalb der Wlnde kontinuierlich lndern und das 
Emissionsvermogen des Gases sol1 beliebig von der Temperatur abh&ngen. WIrmeleitung wird nicht in 
Betracht gezogen. Die maggebenden Integralgleichungen wurden fur einen Bereich des einzigen 
maBgebenden Parameters kL = 0,l bis 24 gel&t (k = Absorptionskoeffizient, L = Abstand). Tem- 
peraturverteilungen und W&meiibertragung sind angegeben. Ftir mittlere Werte kL ist die Tempera- 

tur einheitlich innerhalb des Gases. 

Abstract-B erarbe aauo pemeune sazaru nymc~oro Te~~oo6Me~a ~ern~y RBJWE napaJt- 
~e~bH~~~ ~~aCTl~HaM~ C yYi$I'OM Ii3~y~eH~~ H ~OP~O~eH~K I%38, 1l~~O~~qerOC~ Ale%Jfy 

HMMII. lips 3~01 upe~no~ar~e~c~ Henp~p~aHoe ~13~eueH~~e Tek~~epaTyp~ nnexcny nnacru- 
uann, a ~yYe~cnyc~aTe~bHa~ cnoco6wOcTb ra3a RBZIR~TCR n106ol ~y~l~~~e~ TeMnepaTypbI. 

PeIIIeHEiR OCHOBH~IX HHTerpanbHhIx ypaBEIeHz8 AaHhr WIFI 3HaYeliKR napaMeTpa kL OT 0.1 
3.0 2.0, me h--IFoa#i@&fqnem nysenornoIqeewI, L---,?IfHetHl&i pa8Mep WcTeMbI. &X5- 

sejqeHbI pe3ynbTaTbI pacu6Ton TemnepaTypHoro 110nn K II~T~K~B Tenna. Anff iqvr= 

aHa'XeH&ifi kL TeMIlepaTypa r'838 IIpHHIlMaeTCR IlOCTORHHOfi B IIJIOCKOCTII CeqeHMfl CEICTeMbI. 

NOMENCLATURE 

eb = emissive power of black wall, uT4; 
eg = emissive power of gas element, see 

equation (2) ; 
~~ -.- ._.-- 

k = absorption coefficient (logarithmic decre- 
ment of radiation) ; 

L = spacing between plates; 
q = net rate of heat transfer per unit area to 

wall ’ 
* Present address: RCA, Princeton, New Jersey. 
7 Present address: Professor of Mechanical Engin- 

eering, University of Minnesota, Minn~po~~, Minne- 
sota. 

..---, 
r = distance between emitting and receiving 

elements; 
S = internal heat source per unit volume; 
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T = absolute temperature; one another. The gas filling the gap will be per- 
X = dimensionless normal co-ordinate, x/L; mitted to take a full part in the radiative heat 

X0, dimensionless co-ordinate of absorb- exchange, absorbing energy and also re-emitting. 
ing volume, x,/L; The gas temperature will, in general, vary across 

x = distance measured normal to lower plate; the gap. Further, there may be a heat source 
x0, distance of absorbing volume from in the gap. 
lower plate ; 

y = radial co-ordinate in plane of walls; 
6 = intinitesimal diameter of absorbing 

sphere ; 
0 = angle between surface normal and 

direction of absorbing volume (see Fig. 
3); 

h = integration variable ; 
FIG. 1. Parallel plate enclosure. 

0 = dimensionless emissive power 
(c, - 6)l(S/2k); Within the framework of the limiting assump- 

4 = dimensionless emissive power tions, our aim is to make a complete formulation 

(e, -ebl)/(ebz - ebl). of the problem in which the details of local 
Differentials absorption and emission processes are accounted 

dA, = wall surface area; for. Applying conservation of energy to an in- 
dA, = surface area of radiating gas strip (see finitesimal gas volume element, we are led to an 

Fig. 2); integral equation for the emissive power (tem- 
dw = solid angle; perature). Solutions have been carried out for 
do = gas volume; several values of the governing parameter kL 

Subscripts (k = absorption coefficient), yielding tempera- 
1 = lower wall ; ture distributions and heat flux rates. Among 
2 = upper wall. the results of practical interest, there is quanti- 

tatively displayed the manner in which the heat 
INTRODUCTION transfer decreases as the gas becomes more 

THE high temperature levels achieved in modern absorbant. 
propulsion systems (as well as in furnaces) de- Heat transfer by conduction through the gas 
mand that heat transfer calculations include can be included in the formulation. But, its intro- 
radiation effects of absorbing-emitting gases duction into the problem introduces mathe- 
which may lie between heat transfer surfaces. matical non-linearities which significantly com- 
In general, the gas would be non-uniform in plicate the solution of the governing integral 
temperature and may contain heat sources. equation. In the present study, conduction has 
The general problem would involve heat transfer not been accounted for. It is interesting to note 
by convection and conduction as well as by that the techniques used in setting up the present 
radiation. However, it appears that even the problem also apply to other geometries. 
simpler situation of purely radiant interchange From a review of the literature on radiation in 
between surfaces separated by a non-isothermal, a parallel plate enclosure, it would appear that 
absorbing-emitting gas has not yet been fully previous investigations have given incomplete 
solved. It is to this latter problem to which we consideration to the role of the gas. For example, 
turn our attention here. Jakob [1] (p. 105) computes the absorption 

Specifically, consideration is given to a system in a gas layer as radiant energy passes from a 
composed of two parallel plates, each infinite hotter to a colder wall. But, the gas is not per- 
in extent, which are separated by a gap of mitted to re-radiate, as it must under steady 
thickness L. The conliguration is shown sche- state conditions. By ignoring the emission of 
matically in Fig. 1. The plate temperatures Tl the gas, Jakob circumvents the problem of 
and T, are specially uniform, but may differ from computing the temperature distribution of the 
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gas; and as a consequence, his analysis does not 
permit a complete computation of the net heat 
transfer. A practical procedure has been pro- 
posed by Wohlenberg [1] (p. 132) for computing 
the net heat transfer in a gas-filled parallel plate 
enclosure. He ignores the local absorption- 
emission processes, supposing the gas to be 
isothermal and to radiate as a whole according 
to Stephan-Boltzmann’s law. 

An important engineering approach in the 
study of non-isothermal radiating gas bodies has 
been made by Hottel and Cohen [Z]. They 
provide interchange factors between $&e-sized 
rectangular gas volumes situated at various 
orientations with respect to one another. Similar 
information is also given for surface-to-volume 
radiation. Such factors are useful when a radia- 
tion problem is formulated by subdividing the 
gas body into a group of finite volumes elements, 
each of which possesses a uniform temperature 
different from its neighbors. The approach of 
the present analysis differs from Hottel and 
Cohen in that the temperature is permitted to 
vary continuously throughout the gas and energy 
conservation is therefore applied to ~~~~itesirnal 
volume elements. 

Readers who are interested primarily in 
results are invited to pass over the Analysis 
section. 

ANALYSIS 

Conseroation of energy 
We now proceed to study the purely radiative 

exchange in the parallel plate system of Fig. 1. 
Attention is focused on an i~nitesimal volume 
element dV, and the conservation of energy 
principle is applied. According to this law, the 
energy content of the element must remain con- 
stant in the steady state; and as a consequence, 
inflow must equal outflow. Energy arrives at the 
element dV due to radiation emitted at both 
bounding walls and due to radiation emitted in 
the remainder of the gas body. In addition, there 
may be an internal heat source S which also 
supplies an energy input into dV. For simplicity, 
it will be supposed that the walls behave as black 
bodies so that there is no indirect energy transfer 
due to reflections at the surface. The analysis 
can be extended to include the effects of non- 
black walls. 

Then, we can write the conservation principle 
for dV as: 

+ 

+ 

+ 
- 

energy absorbed in dV from emission of 
gas body 

energy absorbed in dV from emission of 
lower wall 

energy absorbed in dV from emission of (1) 

upper wall 
internal heat generation : 
energy emitted by dV 1 

Our task is to evaluate the various terms of this 
expression. In the derivation that follows, it 
will be assumed that the gas occupying the 
enclosure is gray, so that the absorption coeffi- 
cient* k is independent of wavelength. Further, 
k will be taken as independent of temperature. 
In principle, extension can be made to the situa- 
tion where k depends on wavelength and/or 
temperature, with the net result of enormously 
increasing the difficulty of obtaining solutions 
to the problem. We will select a spherical element 
of diameter 6 for our infinitesi~l volume dC/. 
Separate examination of the terms comprising 
equation (1) will be made in the ensuing para- 
graphs. 

Energy absorbed in d V from emission qf gas body 
The derivation of this quantity is facilitated 

by reference to Fig. 2. We focus attention on the 
volume dV located at a distance x, from the 

FIG. 2. Diagram for deriving absorption at dV due 
to gas emission. 

lower surface. The first step is to determine the 
energy absorbed in dV due to the emission of the 
cross-hatched gas layer situated at a distance 
(x0 - x) below dV. Since the temperature de- 
pends only on x, the emission per unit volume 
of such a layer is spatially uniform. 

* Jakob uses the aIternate designation: logari~ic 
decrement of radiation. 
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It will be supposed that the emission from a 
gas volume d7 can be written as 

4ke, dr (2) 

which includes as a special case the conventional 
representation [2] 

4kuP dr (2) 

Under the assumntion that an in~itesimal 
element of the gas radiates uniformly in 
directions, it follows that the energy leaving 
shaded volume through a solid angle dw is 

4ke,(dA, dx) 2 

all 
the 

(3) 

where dT = dA, dx. Of this amount, there arrives 
at dV 

% dA, dx dw e+ (4) 

the exponential factor accounting for the ab- 
sorbing effects of the intervening gas. 

Since we are dealing with infinitesimal bodies, 
the rays arriving at dV from the shaded volume 
form a parallel bundle. As is shown in the 
Appendix, the energy absorbed (per unit of 
arriving energy) by a sphere of diameter 6 on 
which there impinges a bundle of parallel rays 
is 

(5) 

So, of the energy leaving the shaded volume, the 
amount 

$ k26 e, dA, dx dw e-kr (6) 

is absorbed in the spherical volume dV. 
Now, we proceed to compute the absorption 

in dV due to energy emitted by the entire cross- 
hatched strip. From geometrical considerations, 
making use of symmetry, we have 

dw = $!f, dA, = 27ry dy, r2 = ya + (x - x0)2 

Introducing these relations into (6), we integrate 
from y = 0 to y = co and thereby obtain the 
cont~bution of the entire strip to the absorption 

in dV. The result of the integration can be re- 
phrased in the following form 

[S 

m 
2k2e, dV k(no _ x) (e-‘lJYdX 

I 
dx (7) 

where the bracketed quantity is called the ex- 
ponential integral and has been tabulated to high 
accuracy in reference ]3]. 

The entire gas body can be considered as 
being made up of a series of cross-hatched strips. 
Each strip contributes an amount of energy to 
dvdepending on the distance (x0 - x) and upon 
the local temperature (i.e. the local value of e,). 
The energy absorbed in dV from all the emitting 
gas strips is found by adding up (inte~ating~ 
the contributions of each strip. Then, the final 
expression for the energy absorbed at dV due 
to the emission of the entire gas body is 

1 dx + 

Energy absorbed in dV.fram emission of walls 
Consideration is first given to the energy 

emitted at the lower wall, and attention is 
directed to Fig. 3. Since it has been assumed that 

- 

FIG. 3. Diagram for deriving absorption at dV due 
to surface emission. 

the wall is black, the energy leaving the darkened 
segment of surface area dA, in the direction B in 
a solid angle dw is 

This energy travels a distance r before encounter- 
ing the spherical element dV. As a consequence 
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of absorption in the intervening gas, there arrives 
at dV 

2 dA, cos 0 dw e--Lr 
7r (10) 

As already discussed in the preceding section, 
the sphere (diameter S) absorbs 2k8/3 of this 
amount. So, the contribution of the surface 
area dA, to dV is 

G 6 keb, dA, cos 8 dw e-kr (11) 

Since dA, is a typical element of the lower wall, 
the contribution of the entire wall may be found 
by integrating equation (11). Introducing the 
relations 

7TP/4 
dm=r2, dA, = 27ry dy, 

r2 = y2 + x2, cos e = x0/r 

integration over the range y = 0 toy = co gives, 
after rearrangement 

2k ebI dV exp ( - kx,) - 

- kx, 
s 

1 (e-Wdh ] (12) 
0 

Equation (12) represents the energy absorp 
tion in dV due to black body emission at the 
lower surface. In an analogous way, the contribu- 
tion to dVfrom black body radiation at the upper 
surface can be written as 

2k eb2 dV exp {- k(L - x,,)} - 

m - k(L - x0) J (e-“/h)dX (13) 
k(L-x.1 1 

Internal heat generation 
There may be an internal heat source in the 

gas due to chemical reactions, electric currents, 
etc. Suppose that the heat generation rate per 
unit volume is denoted by S; so within dV, there 
is generated 

SdV (14) 

Within the framework of our model, S can be a 
function of X; but it will be taken as a constant 
here. 

Governing equation for the temperature (eo) 
distribution 
We are now in a position to evaluate the con- 

servation equation (1) using the results of the 
preceding paragraphs. Gathering together the 
successive terms respectively represented by 
equations (8) (12), (13) and (14) and equating 
to the emission as given by equation (2) with 
dr = dV, we arrive at 

Jr e,(x) [J~xo_, te-+)dA]dx + 
L 

S [J 
cc 

+ e,(x) (e-“/X)dh dx + 
X” K-x.) 1 I 

+ ebl 

- x0 J L (e-hiWh] + > (15) 
+ eb2 

exp (- k(L “- x0) } 
~~- - 

k 

- tL - x0) /kyL_xj te-VW] + 
0 

+ S/2k2 = i eg(xo) 
J 

This integral equation governs the variation of 
the emissive power eg with x. Since, in general, 
eg would be a specific function of temperature, 
it follows that equation (15) can as be regarded 
as the governing equation for the temperature 
distribution. 

It is evident that equation (15) is linear in 
e,. This suggests a rather convenient reduction 
of the general problem which includes different 
Wall temperatUreS (ebl # e@) and a non-Zero 

heat source to two simpler problems. One of 
these is the case of different wall temperatures in 
the absence of a heat source; while the second is 
the case of an internal heat source with identical 
wall temperatures. The solution of the general 
case is simply a linear sum of the two. These 
separate situations are discussed separately 
below. 

Diflerent wall temperatures; no heat source 
In the absence of a heat source, it is convenient 

to introduce the dimensionless emissive power 4 
as follows 
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(16) 

Substituting into equation (15) and integrating 
by parts, we find the following integral equation 
for 4 

where X = x/L. It may be observed that only a 
single parameter, kL, appears in the integral 
equation. 

It is thus seen that use of the dimensionless 
emissive power + removes the need to consider 
specific values for the wall temperature and re- 
duces the problem to a dependence on one 
dimensionless parameter, kL. 

Of practical interest is the calculation of the 
heat transfer between the walls. In the steady 
state, the net energy transferred from the hotter 
wall must be identical to the net energy trans- 
ferred to the cooler wall. Focusing attention on 
the lower wall, we write 

net heat transferred to lower wall 1 
= radiation absorbed from emission of 

gas body 

: 

(18) 
+ radiation absorbed from emission of 

upper wall - energy emitted 

To evaluate the gas radiation term, we first find 
the contribution from the elementary cross- 
hatched strip of Fig. 2 and then integrate over 
all strips. The radiation from the upper wall is 
evaluated in a straightforward way taking proper 
account of absorption in the intervening gas. 
After a lengthy calculation, equation (18) is 
evaluated to be 

C 

4 = 2kL 
eb2 - ebl J ’ t&+LXdx - 0 
- 2(kL)2 ‘+A’ J [J ;Lx(e.-‘lX)dh 

0 

(19) 

_t e-LL(l - kL) + (kL)2 J 
where q is the net rate of heat transfer per unit 
area to the lower wall (or from the upper wall). 
Smce eb2 - ebl is the net heat transfer in the 
absence of an absorbing gas, equation (19) 
immediately gives the fractional reduction in the 
heat transfer due to the absorbing-emitting 
medium. 

U~~orrn internal heat source; same wall tempera- 
tures 
For this situation, we denote the black body 

emission common to both walls by eb. Then, 
a dimensionless emissive power variable is 
introduced according to the definition 

e!? - eb 
@ = SJ2k 

Under the transformation, it can be shown using 
integration by parts that equation (15) simplifies 
to 

It is interesting to observe that the trans- 
formation completely removes the need to con- 
sider specific values of the source strength S. 
The only parameter in the problem is kL. 
Solution of equation (21) gives the distribution 
of ernissive power (temperature) across the gap, 
and in particular, the maximum temperature. 

The general solution 
Since the equations are linear, the general 

solution can be written in.terms of + and Cp. 
However, care must be taken to d~e~io~l~e 
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them first. Then, the general solution appears in 
the form 

e, = (eb2 - ebl)+ + ebl + & @ + eb 

where the lower and upper walls have the em- 
IdSSiVe powers (eb f Ql) and (eb f eb2), 
respectively. 

RESULTS FOR NO-SOURCE CASE 

The governing equation for the no-heat source 
case, equation (17), has been solved for values of 
kL equal to 0*1,0*5, 1 and 2. The solutions were 
accomplished numerically on a desk calculator 
using an iterative scheme augmented by the 
intuition of the operator. Numerical integrations 
were carried out using the trapezoidal rule and 
the stability of the solutions was checked by 
perturbation. 

Based on these solutions, the variation of the 
dimensionless emissive power + across the gap 
has been plotted in Fig. 4. Utilizing these distri- 
butions, the heat transfer has been evaluated 
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0 O-I 02 o-3 0.4 0.5 06 07 08 09 IO 
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FIG. 4. Distribution of emissive power in a radiating 
gas between parallel plates (no internal heat source). 

from the equation (19) and is shown on Fig. 5. 
As already noted, the ratio q/(e,, - ebl) directly 
gives the reduction in heat transfer due to the 
presence of the absorbing-emitting gas. 

Turning first to Fig. 4, it may be observed that 
the curves are relatively flat over a large part of 
the gap, with the flattening becoming more 
marked with decreasing values of kL. Conse- 
quently, for moderate values of kL, the bulk of 

the gas body is at a relatively uniform tempera- 
ture. Under these conditions, the neglect of the 
temperature dependency of k seems to be vindi- 
cated. 

The relative uniformity of the temperature 
in the bulk of the gas suggests that heat con- 
duction effects, which depend on temperature 
gradients, will be confined to the neighborhood 
of the walls provided that the thermal conduc- 
tivity is small. So, there appears to be a boundary 
layer phenomenon somewhat similar to the 
situation in fluid dynamics. 

The solutions of equation (17), as displayed in 
Fig. 4, have the property that e, f eb at the 
walls (X = 0 and X = 1). This is completely 
consistent with our model. In the present prob- 
lem, where heat conduction is omitted, tem- 
perature continuity is not required at the walls. 
The values taken on by e, at X = 0 and X z 1 
are simply those required to satisfy energy con- 
servation. 

The flattening trend displayed on Fig. 4 with 
decreasing kL has its analogue in the heat con- 
duction problem in rarefied gases. In that in- 
stance, the temperature distribution across the 
gap passes through a sequence of shapes with 
decreasing gas density which are qualitatively 
similar to the curves of Fig. 4. The two pheno- 
mena have a qualitatively similar explanation. 
In the rarefied conducting gas, a decrease in 
density leads to an increase in mean free path 
for molecular collisions. For the absorbing- 
emitting gas, a decrease in kL leads to an increase 

0.9 

FIG. 5. Heat transfer between parallel plates separated 
by a radiating gas (no internal heat source). 
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in the mean free path (relative to the gap 
spacing) for photon collisions. 

Next, we turn to Fig. 5. The finding that the 
heat transfer 4 decreases with increasing kL is 
quite expected. For instance, it is physically 
reasonable that increasing the gap spacing L 
for a gas of given k must increase the resistance 
to radiative heat flow. A similar conclusion 
applies when the absorption coefficient is in- 
creased for a gap of fixed spacing L. The results 
of Fig. 5 should be useful in choosing an 
“insulating gas” to diminish the radiative heat 
exchange between two surfaces. 

RESULTS FOR THE HEAT SOURCE CASE 

Solutions of the integral equation (21) which 
governs the uniform internal heat source case 
have been carried out numerically for values of 
kL equal to 0.1, 0.5, 1 and 2. The distribution 
of the dimensionless emissive power D obtained 
from these solutions is plotted in Fig. 6. In 

0 @I 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 I.0 
x/L 

FIG. 6. Distribution of emissive power in a heat 
generating and radiating gas between parallel plates. 

common with the findings of the previous section, 
it is seen that the curves are relatively flat over 
a major portion of the gap. The tendency to- 
wards flatness increases with decreasing kL. 
So, for moderate kL there is again an essentially 
isothermal zone over the major portion of the 
gas, and the neglect of the temperature de- 
pendence of k is vindicated. 

It is interesting to study the separate effects 
of the various physical parameters L, k, and S 
on the energy (temperature) distribution. Fig. 6 
is well suited to study the effect of changing the 

gap spacing L. For fixed values of k, S and eb, the 
only parameter which changes from curve to 
curve is L. As expected, the temperature level 
increases as the spacing increases. For small gap 
spacings, the gas body is essentially isothermal. 

Next, we proceed to display the effect of 
changing k while holding S, L and e,, fixed. 
Fig. 6 is inadequate, since k appears both as a 
parameter on the curves and as part of the ordi- 
nate variable. To illustrate the effect, we consider 
the special case where S/2ke,, = 1 when kL = 1. 
(Then, as k changes and the other quantities 
are held fixed, S/2keb must change in a corre- 
sponding manner.) Fig. 7 has been constructed 

6 

5 

$ 
fJ.? 4 

3 

I 
0 

X/L 

FIG. 7. Effect of k on distribution of emissive power 
in a heat generating gas for fixed S, L and eb and 

k, = S/2Oe,, L = 2e,/S. 

on this basis, the distribution of e, being plotted 
against x/L with k decreasing by a factor of 20 
from the lowest to the highest curve. From the 
figure, we note the interesting result that the 
temperature level increases as the absorption 
coefficient k decreases and that this effect is more 
accentuated at lower values of k. This suggests 
that the gas temperature may be minimized by 
using a gas with a high absorption coefficient. 

Finally, we can show the effect of changing the 
source strength S while holding k, L and eb 
fixed. For purposes of illustration, consideration 
is given to the situation where kL = 1. Fig. 8, 
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0 o-2 0.4 0,6 08 IO 
x/L 

FIG. 8. Effect of heat source S on distribution of 
emissive power for fixed k, L, and eb and kL = 1. 

drawn for values of S/2ke, of 1, 10 and 100 
shows the variation of eg with distance across 
of gap. The level of the curves is seen to increase 
linearly with the source strength, as might have 
been expected from the linearity of the problem. 

CONCLUDING REMARKS 

Within the framework of the simplifying 
assumptions, it has been possible to give an 
exact formulation for the problem of radiation 
between two plane walls separated by a non- 
isothermal absorbing-emitting gas. Numerical 
solutions have shown the quantitative response 
of the temperature distribution and heat transfer 
rate to changes in such parameters as absorption 
coefficient k, gap spacing L, and heat source S. 

For moderate values of kL, the temperature 
of the gas body is nearly uniform over a large 
part of the gap, in some measure justifying the 
neglect of the temperature dependence of k. 

Further work involving a more complicated 

model is clearly indicated. Heat conduction 
effects would appear to be important in the 
region near the wall. A more refined treatment 
might well account for the temperature de- 
pendence of k and might consider the non-gray 
characteristics of real gases. Finally, a variable 
heat source might also be included. 

APPENDIX 

Absorption of Parallel Radiation by a Sphere 
According to a Nusselt’s derivation (repro- 

duced in [l], pp. lOO-lOl), the energy absorbed 
by a sphere of diameter 6 from a parallel bundle 
of rays of intensity J is 

J(l f &2[PY1 + k8) - 111 (Al) 

Now, we wish to find the limit of equation (Al) 
for an infinitesimal sphere. First, the exponential 
term is expanded in series 

(k6j2 (k8)3 
e-k6 = 1 _ ,l& + - ~_ - -- f . I . 

2 6 

and then introduced into (Al). After cancella- 
tion and retaining only first order infinitesimals, 
we find that the absorbed energy is 

J ‘2’ ks 0 3 642) 
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